If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8^x=(1/128)^(x-2)
We move all terms to the left:
8^x-((1/128)^(x-2))=0
Domain of the equation: 128)^(x-2))!=0We add all the numbers together, and all the variables
x∈R
8^x-((+1/128)^(x-2))=0
We multiply all the terms by the denominator
8^x*128)^(x+1-2))-((=0
We add all the numbers together, and all the variables
8^x*128)^(x-1))-((=0
We add all the numbers together, and all the variables
8^x*128)^(x=0
Wy multiply elements
1024x^2=0
a = 1024; b = 0; c = 0;
Δ = b2-4ac
Δ = 02-4·1024·0
Δ = 0
Delta is equal to zero, so there is only one solution to the equation
Stosujemy wzór:$x=\frac{-b}{2a}=\frac{0}{2048}=0$
| 4(2k+3)=44 | | −13.7p=−54.8 | | (×-5)-(x+4)=7x | | −13.7p=−54.8 | | 2x-75=x+35 | | 4(3p+3)=60 | | 2x-75=2x-20=x+35 | | 100-2(p+6)=p-20 | | 5m-9=4m=2 | | 8/11n-10=64 | | 10x+25=155 | | 8x+4-4x=10+2x | | –5(s–30)=–10 | | 8(5n-6)=-328 | | 36=-3x-4x | | 8^x-1=6^3x | | 47=n42 | | 7n+8=6n=4 | | 14u=8u+12 | | 2x=7=11 | | 5-2x/7=1-(-x-4) | | Y(t)=-16t^2+78t+5 | | T=-4g+100 | | 2–2x+x^2=0 | | 3x+10=-x+6 | | 5/6x+1/3=5/12 | | -18x+16+4x=-2(7x-8) | | −3*x+1=5*x-7 | | 20r+-13r+-16r+2r=14 | | -2u-16u=18 | | Y=4x(2,8) | | 4(g16)=8 |